
www.manaraa.com

Hydra: A Platform for Survivable and Secure
Data Storage Systems

Lihao Xu
Dept. of Computer Science

Wayne State University

lihao@cs.wayne.edu

ABSTRACT
This paper introduces Hydra, a platform that we are devel-

oping for highly survivable and secure data storage systems

that distribute information over networks and adapt timely

to environment changes, enabling users to store and access

critical data in a continuously available and highly trustable

fashion. The Hydra platform uses MDS array codes that can

be encoded and decoded efficiently for distributing and re-

covering user data. Novel uses of MDS array codes in Hydra

are discussed, as well as Hydra’s design goals, general struc-

tures and a set of basic operations on user data. We also

explore Hydra’s applications in survivable and secure data

storage systems.

Categories and Subject Descriptors
H.3.2 [Information Storage]: File organization

General Terms
Design

Keywords
Distributed Storage, Survivable Storage, Secure Storage, MDS

Array Codes

1. INTRODUCTION

The rise of ubiquitous computing have prompted the need

of ubiquitous information storage and access. Supporting

the availability, survivability, persistence, confidentiality and

integrity of information is becoming more and more cru-

cial. This calls for secure and reliable data storage systems

that distribute information over networks, enabling users

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
StorageSS’05, November 11, 2005, Fairfax, Virginia, USA.
Copyright 2005 ACM 1-59593-223-X/05/0011 ...$5.00.

to store and access critical data in a continuously available

and highly trustable fashion. Many research and develop-

ment efforts have been made to address various issues in

building such storage systems, including disk arrays, such

as the RAID [8], clustered systems, such as the NOW [1],

distributed file systems, such as the NFS (Network File Sys-

tem)[25], HA-NFS[3], xFS[2], AFS[22], Zebra[12], CODA

[23], Sprite[18], Scotch[10] and BFS[7], storage systems, such

as NASD [9], Petal[15], PASIS[27] and RAIN[6], and large

scale data distribution and archival networks, such as Inter-

memory[11], Ocean Store[14] and Logistical Network[19].

As already indicated by these efforts, proper data redun-

dancy is the key to provide high reliability, availability and

survivability. Evolving from simple data replication or data

striping in early clustered data storage systems, such as the

RAID system [8], people have realized it is more economical,

efficient and secure to use the so-called threshold schemes

to distribute data over multiple nodes in distributed storage

systems [27, 26, 11, 14]. The basic idea of threshold schemes

is to map an original data item into n pieces, or shares, using

certain mathematical transforms. Then all the n shares are

distributed to n nodes in the system, with each node having

one share. Upon accessing the data, a user needs to collect

at least k shares to retrieve the original data, i.e., the orig-

inal data can be exactly recovered from m different shares

if m ≥ k, but less than k shares will not recover the origi-

nal data. Such threshold schemes are called (n, k)-threshold

schemes. The threshold schemes can be realized by a few

means, and can also be used for secret sharing[4, 24, 17, 20].

To maximize the usage of network and storage and eliminate

bottlenecks in a distributed storage system, each data share

should be of the same size. Otherwise the failure of a node

storing a share with bigger size will have bigger impact on

the system performance, thus creating a bottleneck in the

system.

From error control code point of view, an (n, k)-threshold

scheme with equal-size shares is equivalent to an (n, k) block

code, and especially most (n, k)-threshold schemes are equiv-

alent to (n, k) MDS (Maximum Distance Separable) codes

[17, 16]. An (n, k) error control code uses mathematical

means to transform a k-symbol message data block to an

n-symbol codeword block such that any m symbols of the

www.manaraa.com

codeword block can recover all the k symbols of the original

message data block, where k ≤ m ≤ n. All the data symbols

are of the same size in bits. Obviously by the simple pigeon

hole principle, k ≤ m. When m = k, such an (n, k) code is

called MDS code, or meets the Singleton Bound [16]. Here-

after we simply use (n, k) to refer to any data distribution

scheme using an (n, k) MDS code. Using coding terminol-

ogy, each share of (n, k) is called a data symbol. The process

of creating n data symbols from the original data whose size

is of k symbols is called encoding, and the corresponding pro-

cess of retrieving the original data from at least arbitrary k

data symbols stored in the system is called decoding.

It is not hard to see an (n, k) scheme can tolerate up to

(n − k) node failures at the same time, and thus achieve

data reliability, or data survivability in case the system is

under attack where some nodes can not function normally.

The (n, k) scheme can also ensure the integrity of data dis-

tributed in the system, since an (n, k) code can be used to

detect data modifications on up to (n − k) nodes.

While the concept of (n, k) has been well understood and

suggested in various data storage projects, virtually all prac-

tical systems use the Reed-Solomon (RS) code [21] as an

MDS code. (The so-called information dispersal algorithm

[20] used in some systems is indeed just a RS code.) The

computation overhead of using the RS code, however, is

large, as demonstrated in several projects, such as OceanStore

[14]. Thus practical storage systems seldom use a general

(n, k) MDS code, except for full replication or mirroring

(which is an (n, 1)), stripping without redundancy (corre-

sponding to (n, n)) or single parity (which is (n, n − 1)).

The advantages of using (n, k) are hence very limited if not

totally lost. We are thus developing a general storage plat-

form, which we call Hydra, to provide flexible (n, k) schemes

that can be computed efficiently, together with a set of ba-

sic operations on data files. As of our best knowledge, such

a platform or interface does not exist in current commer-

cial data storage systems. What makes Hydra distinct from

other ones and thus novel and exciting is the use of MDS

array codes (which we will have more discussions on in the

following section) that we design and develop for this plat-

form, and our novel use of an MDS code to achieve load

balancing as well as fault tolerance.

2. ARRAY CODES AND HYDRA

2.1 Basics of Array Codes
MDS array codes are a class of MDS codes, whose encod-

ing and decoding mainly are bitwise XORs (exclusive ORs).

Known MDS array codes include the EVENODD code [5],

the X-Code [28] and the B-Code [29]. These MDS array

codes are very efficient to encode and decode.

Table 1 shows the encoding rule of a (4,2) B-Code. Here

+ is the bitwise XOR operation (this notation will be used

hereafter, unless otherwise stated). ai’s are user data sym-

bols of the same size. A data symbol is a very flexible unit,

which could be a bit, a byte or a block of arbitrary size.

When applied to a distributed storage system, all the sym-

bols in the same column are stored on the same node. For

example, using this (4,2) B-Code for a system with 4 storage

nodes, the 1st node stores symbols a1 and a2 +a3 (note this

symbol has the same size of ai’s), and the 2nd node has a2

and a3 + a4, and so on. It is easy to verify the original 4

data symbols a1 to a4 can be recovered from all the symbols

stored on any two nodes.

node1 node2 node3 node4

a1 a2 a3 a4

a2 + a3 a3 + a4 a4 + a1 a1 + a2

Table 1: Encoding of a (4,2) B-Code

2.2 Flexible Use of Array Codes in Hydra

2.2.1 Symbol Size

As already mentioned above, a data symbol in an array

code is a very flexible data unit. It can be a bit, a byte,

a block of any size, or even a file. An array code can be

applied on a file, using a block whose size is optimal for the

application. An array code can also be used for a group

of files, with files being data symbols, as long as those files

are of the same size. (We can use other simple techniques

to apply an array code for files with different sizes. For

example, set the data symbol size close to that of most of

the files and use another symbol size for the remaining data.)

This feature is very useful for certain applications, e.g., for

an application which needs to achieve reliability of a set of

files yet requires an individual file to be stored on a single

node entirely for efficient computational processing.

2.2.2 Load Balancing

While an (n, k) MDS code ensures the exact recovery of

original data from any k nodes, user data can certainly be

recovered from more than k nodes. This feature enables

dynamic load balancing among the storage nodes. For ex-

ample, when the (4,2) B-Code in Table 1 is used, as long as

all the 4 nodes are functioning, a user data can be easily re-

covered by collecting the 4 original data symbols in the first

row from all the 4 nodes without any decoding computation.

It is also possible to recover user data from 3 nodes, e.g., 1

symbol each from the first 2 nodes, and 2 symbols from the

last node. In this case, decoding only needs to recover 1

original data symbol. Thus based on the available network

bandwidth, processing load and response latency from each

node, as well as processing power of the client node, different

data recovery operations can be performed to achieve load

balancing among the storage nodes, dynamically on block

level. A client can also achieve trade-off between communi-

cation and computation. For example, if it is more expensive

www.manaraa.com

to set up and maintain connections to storage nodes, due to

latency and other factors, than local computations, a client

may well choose to recover the original data symbols from

only k nodes even if other nodes are accessible.

2.2.3 Distribution of Symbols

When an (n, k) code is applied to a user data, in general

one node stores one data symbol of a codeword. But these

nodes can be grouped based on various application needs.

For example, if a (8,3) code is applied on a user data, and we

have storage nodes physically located at two different sites

A and B. Then we can evenly split the 8 nodes between the

two sites, with 4 each. In this case, the 4 nodes at site A

can form a group, which can provide user data in normal

situations. Should one node fail at site A, the remaining

3 nodes can still provide intact data to the user, without

contacting the nodes at site B. Only when 2 or more nodes

fail at one site, a user data needs to be recovered with the

help of nodes from another site. Thus in normal situations,

the two groups at the two sites can function independently

for user data retrievals, while each group has certain degree

of reliability. Combined, the two groups still maintain the

designed overall reliability degree.

2.2.4 Tunable Parameters

In a practical system with N nodes, an (n, k) code (where

usually n < N) can be applied to encode a user data. Then n

symbols are stored on n of the N nodes in the system. How-

ever, both k and n are tunable based on the user’s needs.

Note here the reliability degree, i.e., the number of toler-

able simultaneous node failures, depends on the difference

of n and k, namely (n − k); while the effective storage use

depends on the ratio of n and k, i.e., k/n. Further more,

even after both n and k are already determined, it is still

possible to use an (m, k) code (where m > n) by storing

only n of the m data symbols on n storage nodes. This gives

Hydra another degree of flexibility in data placement. For

example, to enable more random node grouping, some nodes

other than the n designated notes may choose to store some

of the codeword symbols as well. If just an (n, k) code is

used, some data symbols are inevitably replicated in a naive

fashion, thus the increase in reliability degree by those node

is limited. In worst case, there is no reliability increase at

all. But by using an (m, k) (m > n) code, extra nodes

can store data symbols other than the n ones already used.

This effectively increases reliability degree to the maximum

possible.

3. DESIGN OF HYDRA

The Hydra platform is being developed for both tradi-

tional file systems and database-like structured data records.

In the first phase, the development effort has been on file

systems, upon which many applications are based. Thus

in this section, our discussions are focused on file systems.

Many important components to be discussed, however, can

be readily shared by database-like data pools.

3.1 Design Goals
For file systems, the Hydra platform should meet the fol-

lowing objectives:

• The platform should not be restricted to either a par-

ticular operating system (OS) or a particular file sys-

tem (FS). It should be easily portable to any OS and

FS.

• The platform should not be dependent on any partic-

ular hardware.

• UNIX file system semantics should be maintained for

UNIX clients.

• The platform’s overhead on a host file system should

be negligibly small, in terms of both performance and

storage usage.

• The implementation should be transport-independent.

• It should be easily installable, configurable, scalable,

flexible, maintainable and automatable.

3.2 Structure and Components
To meet the above objectives, the Hydra platform is built

top of a host (distributed) file system. (We may also pursue

to build Hydra under a file system to enable fast and pain-

less migration of various applications to our Hydra platform;

or we may choose to integrate this platform to a file system

for further efficiency.) The advantage of this approach is to

maximize the use of an existing file system to deal with com-

mon issues, such as name space, file consistency, read/write

caching, stateful or stateless operations and semantics of file

sharing, thus enables us to focus on new components that

complement existing file systems.

The Hydra consists of the following basic components or

building blocks:

1. Environment Monitor

2. Meta Data

3. Operations

We briefly discuss these components in the subsequent

subsections.

3.3 Environment Monitor
In Hydra, each storage node has a monitor which monitors

environment changes in a system. A monitor communicates

with its peers on other nodes. The communications may

use broadcast, unicast or both, depending on a system’s

architecture and properties, as well as applications’ needs.

What a monitor keeps track of includes information about

www.manaraa.com

which storage nodes are accessible, the dynamic connectiv-

ity changes in the system, and various loads on each storage

node. (An inaccessible node may be deemed to have in-

finitely high load on it.) Upon request, the monitor can

direct an application to proper nodes for various operations.

The monitor may also perform functions that are neces-

sary or desirable for various secure data operations, e.g.,

authentication among storage nodes.

3.4 Meta Data
For a user file, its encoded shares are distributed through

the host file system’s write operations. Conversely, a user

file’s encoded shares are collected through the host file’s read

operations. Every encoded share of a user file has a new

metadata (index) file associated with it, which is tentatively

called the hnode (Hydra Node). The hnode stores the infor-

mation necessary for distributing and recovering the associ-

ated file(s). It includes the following attributes:

• Locations of all associated shares and the original file,

which may be specified by a path name with the server

node ID if not already included in the path name.

• Error correcting code used for encoding and decoding

the shares.

• Security flag: indicates if an encryption key is needed

to recover the user file.

• Access rights: rights for read, append, write or delete

• Extension for other information

Each of the encoded shares of a user file, as well as the file

itself (if the user chooses to store a local copy in addition

to its encoded shares on server nodes) has the same hnode

information stored with it for high redundancy. Since hnode

is very important and its size is small (less than a hundred

bytes), this high redundancy brings another level of reliabil-

ity and security for easy detection of any modifications on it

and easy recovery in case some hnode is destroyed together

with its encoded share.

In addition to the hnode for each user file, Hydra also

maintains system wide configuration information, mainly

the mapping between the logical server ID and its location

information, such as IP address or host name. This config-

uration file should be small and easy to manage.

The server nodes may but not necessary replicate direc-

tory trees on a client machine, which can be decided by users

or system administrators.

3.5 Operations

3.5.1 Distribute (Write)

This operation uses a proper code, which may be specified

by the user, to encode the desired shares. Then it creates

a corresponding hnode file if not existed already, and writes

the shares together with the hnode files to proper server

nodes (which again may be specified by the user). The file

create and write operations are just the ones supported by

the host file system.

If the hnode file exists, it updates the related hnode files

if necessary, for example a previous Move operation was in-

complete (see the operation below) or a different code is used

for this write operation.

3.5.2 Recover (Read)

This operation first reads share information from the hn-

ode and updates all the hnode files if necessary (see the Move

operation below), then reads proper shares from as many ac-

cessible server nodes as possible. The availability of a share

file on a server node can be easily detected by opening the

share file. After collecting enough shares, a decoding opera-

tion is performed to recover the original user data. The user

data then is passed to proper applications or written to a

local file specified by the user.

Note here the decoding operation may not need any com-

putation at all if all the share files are accessible. For exam-

ple, if the (4,2) B-code in Table 1 is used to distribute the

original data, and all the 4 share files are accessible, this re-

cover operation simply reads all the 4 original data symbols

at the first row from the 4 server nodes, without any com-

putation. In general, the more server nodes are accessible,

the less computation the decoding operation needs.

Again the file open and read operations are from the host

file system.

3.5.3 Detect

This operation is to detect whether the original file (local

copy) and/or the share files have been modified (or cor-

rupted) on some server nodes. The operation employs a

proper error detection algorithm to detect possible modifi-

cations in the share files and/or original file. It issues proper

report if modifications in the original or any share file are

detected.

An (n, k) MDS code can detect up to (n − k) symbol

errors[16].

3.5.4 Repair

Upon detection of any modifications in the original or any

share file, this operation may be used to correct the mod-

ifications if the number of the modifications is within the

code’s error correcting capability. This operation employs a

proper error correction algorithm of the code to correct the

errors (i.e., the modifications).

An (n, k) MDS code can correct up to �n−k
2

� symbol errors

[16].

3.5.5 Restore

When some share files are known to be modified or cor-

rupted or totally destroyed due to attacks or disasters, this

operation can be used to restore those share files (and thus

www.manaraa.com

the original file as well if needed) to a consistent state with

the other intact share files. In coding theory, these share files

are regarded as erasures, and this operation uses a proper

erasure decoding algorithm to restore these erased symbols

(share files). Note the difference between this operation and

the Repair operation is whether the locations of corrupted

share files are known or not. This operation can be used if

the corrupted share files are already identified (e.g., a server

node has been compromised and a share file on it has been

destroyed), while the Repair operation only knows there are

corrupted share files but their locations are not known, i.e.,

which share files are corrupted is unknown. Thus for a given

code, the Restore operation is more efficient to compute and

can recover more corrupted share files.

An (n, k) MDS code can correct (restore) up to (n − k)

symbol erasures [16].

3.5.6 Copy

When the original file or a share file is copied, it creates a

hnode file for the new file, and copies the associated hnode

to the new hnode file. The copy operation is the host file

system’s file copy operation.

3.5.7 Move

When the original file or any share file is moved, this oper-

ation updates its hnode with the new pathname of the moved

file and moves (using the host file system’s move operation)

the updated hnode to the new location as well. The Move

operation then updates all the other related hnode files with

the new locations of the moved file and its hnode. If some

hnode files are inaccessible, this operation marks a flag in

the extension field of the moved hnode to indicate this move

operation is incomplete and related hnode files need to be

updated when accessed later.

3.5.8 Check

This operation checks and reports the consistency of all

the related hnode files and performs proper updates if nec-

essary. It can be used before the Detect, Repair and Restore

operations.

3.5.9 Delete

First any share file and/or its hnode is not expected to be

deleted separately. If such a deletion is detected through the

Check operation, it indicates possible compromise on the file

and further actions may be needed.

This operation is used to delete (using the host file sys-

tem’s delete operation) the original file (if exists) and deletes

all the associated share files and hnode files. If some share

files and/or hnode files are inaccessible, a deletion incom-

plete flag is marked in the original file’s hnode. This hnode

is not deleted until all the other related files are deleted.

3.5.10 Others

Besides the above basic operations, other utility opera-

tions are needed to access, display, modify and update hnode

files. More operations may be needed if necessary.

4. APPLICATIONS OF HYDRA

In addition to prototyping the Hydra platform, we will

also develop a few applications.

Application of the Hydra platform for survivable storage

is straightforward. Using this platform, important data files

can be distributed to multiple storage nodes that are possi-

bly placed at different physical locations.

The Hydra platform can also be used to provide a secure

distributed storage for various applications and facilities. In

most attacks on storage systems, one of first things an (edu-

cated) attacker does after successfully compromising a node

is to change, corrupt and/or destroy related log files. Such

actions certainly increase the difficulty of timely detecting,

defending and repairing a corrupted system. While itself

alone is not enough for secure storage, together with other

tools, such as system activity loggers (e.g., syslogd in UNIX

type systems), network activity monitors (e.g., netstat in

UNIX), file integrity checker (e.g., tripwire [13]) and other

intrusion detection and prevention tools, Hydra provides a

secure storage platform for various important system log in-

formation. Generally one can assume it is much harder for

attacks to be successful on multiple server nodes at the same

or relatively short time than on on a single node. Thus by

distributing important system files, e.g., sensitive configura-

tion files, log files and important binaries, to multiple server

nodes using the Hydra platform and integrating various Hy-

dra operations, such as Check, Detect, Repair and Restore, it

is much easier to detect, prevent and restore against various

attacks.

More details on applications will be reported as they are

developed.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we briefly describe Hydra, a platform that

is being developed for survivable and secure data storage

systems and applications. Using flexible (n, k) MDS array

codes that can be encoded and decoded efficiently for prac-

tical systems and applications, the Hydra platform provides

a set of basic data operations, as well as necessary auxiliary

tools. These operations and tools can be readily integrated,

adapted and expanded to various systems and applications.

In the first phase, we have designed the general structure

of Hydra, and we have implemented a library of encoding

and decoding operations for certain (n, k) MDS array codes.

In the following phases, implementation of more codes will

be added to the library. The basic operations described in

Section 3.5 will be implemented, including their interfaces

to UNIX file systems. A few applications will also be de-

veloped to demonstrate Hydra’s potential for data security.

www.manaraa.com

Progresses on Hydra will be timely reported. Upon its com-

pletion, we hope the Hydra platform will become a useful

building block and be adopted in various related data stor-

age systems and applications.

6. ACKNOWLEDGMENT

This work is being support by the National Science Foun-

dation through grant IIS-0430224.

7. REFERENCES
[1] T.E. Anderson, D.E. Culler and D.A. Patterson, “A

Case for NOW (Networks of Workstations),” IEEE

Micro, 15(1), 54–64, 1995.

[2] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D.

Roselli and R. Wang, “Serverless Network File

Systems”, ACM Trans. on Computer Systems, 41-79,

Feb. 1996.

[3] A. Bhide, E. Elnozahy and S. Morgan, “A Highly

Available Network File Server”, Proc. of the Winter

1991 USENIX Technical Conf., 199-205, Jan. 1991.

[4] G. R. Blakley, “Safeguarding cryptographic keys”,

Proc. AFIPS 1979 Nat. Computer Conf., 313-317,

June 1979.

[5] M. Blaum, J. Brady, J. Bruck and J. Menon,

“EVENODD: An Efficient Scheme for Tolerating

Double Disk Failures in RAID Architectures,” IEEE

Trans. on Computers, 44(2), 192-202, Feb. 1995.

[6] V. Bohossian, C. Fan, P. LeMahieu, M. Riedel, L. Xu

and J. Bruck, “Computing in the RAIN: A Reliable

Array of Independent Node”, IEEE Trans. on Parallel

and Distributed Systems, Special Issue on Dependable

Network Computing, 12(2), 99-114, Feb. 2001.

[7] M. Castro and B. Liskov, “Practical Byzantine Fault

Tolerance”, Operating Systems Review, ACM Press,

NY, 173-186, 1999.

[8] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, D.A.

Patterson, “Raid – High-Performance, Reliable

Secondary Storage,” ACM Computing Surveys, 26(2),

145–185, 1994.

[9] G.A. Gibson and R. van Meter, “Network Attached

Storage Architecture”, Communications of the ACM,

43(11), 37-45, Nov. 2000.

[10] G.A. Gibson, D. Stodolsky, F.W. Chang, W.V.

Courtright II, C.G. Demetriou, E. Ginting, M.

Holland, Q. Ma, L. Neal, R.H. Patterson, J. Su, R.

Youssef and J. Zelenka, “The Scotch Parallel Storage

Systems,” Proceedings of the IEEE CompCon

Conference, 1995.

[11] A. V. Goldberg and P. N. Yianilos, “Towards an

Archival Intermemory”, Proc. of IEEE Advances in

Digital Libraries, Apr. 1998.

[12] J.H. Hartman and J.K. Ousterhout, “The Zebra

Striped Network File System,” ACM Transactions on

Computer Systems, 13(3), 274–310, 1995.

[13] G. H. Kim and E. H. Spafford, “The Design and

Implementation of Tripwire: A File System Integrity

Checker”, Proc. of 2nd ACM Conf. on Computer and

Communication Security, 1994.

[14] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.

Eaton, D. Geels, R. Gummadi, S. Rhea, H.

Weatherspoon, W. Weimer, C. Wells and B. Zhao,

“OceanStore: An Architecture for Global-Scale

Persistent Storage”, Proc. of the Ninth international

www.manaraa.com

Conference on Architectural Support for Programming

Languages and Operating Systems, Nov. 2000.

[15] E. Lee and C. Thekkath, “Petal: Distributed Virtual

Disks”, Proc. ACM ASPLOS, 84-92, Oct. 1996.

[16] F. J. MacWilliams and N. J. A. Sloane, The Theory of

Error Correcting Codes, Amsterdam: North-Holland,

1977.

[17] R. J. McEliece, D. Sarwate, “On sharing secrets and

Reed-Solomon codes”, Comm. ACM, 24(9), 583-584,

1981.

[18] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson

and B. Welch, “The Sprite Network Operating

System”, IEEE Computer, 21(2): 23-26, Feb. 1988.

[19] J. S. Plank, M. and T. Moore, “Logistical Networking

Research and the Network Storage Stack,” USENIX

FAST 2002, Conference on File and Storage

Technologies, work in progress report, January, 2002.

[20] M. Rabin, “Efficient Dispersal of Information for

Security, Load Balancing and Fault Tolerance”, J.

ACM, 32(4), 335-348, Apr. 1989.

[21] I. S. Reed and G. Solomon, “Polynomial Codes over

Certain Finite Fields”, J. SIAM, 8(10), 300-304, 1960.

[22] M. Satyanarayanan, “Scalable, Secure and Highly

Available Distributed File Access”, IEEE Computer,

9-21, May 1990.

[23] M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E.

Okasaki, E.H. Siegel and D.C. Steere, “CODA - A

Highly Available File System for a Distributed

Workstation Environment,” IEEE Transactions on

Computers, 39(4), 447–459, 1990.

[24] A. Shamir, “How to Share a Secret”, Comm. ACM,

612-613, Nov. 1979.

[25] SUN Microsystems, Inc. NFS: Network File System

version 3 Protocol Specification, Feb. 1994.

[26] M. Waldman, A. D. Rubin and L. F. Cranor,

“Publius: A robust, tamper-evident,

censorship-resistant, web publishing system”, Proc.

9th USENIX Security Symposium, 59-72, Aug. 2000.

Online at:

http://www.cs.nyu.edu/ waldman/publius/publius.pdf

[27] J. J. Wylie, M. W. Bigrigg, J. D. Strunk. G. R.

Ganger, H. Kiliccote and P. K. Khosla, “Survivable

Information Storage Systems”, IEEE Computer,

33(8), 61-68, Aug. 2000.

[28] L. Xu and J. Bruck, “X-Code: MDS Array Codes

with Optimal Encoding,” IEEE Trans. on Information

Theory, 45(1), 272-276, Jan., 1999.

[29] L. Xu, V. Bohossian, J. Bruck and D. Wagner, “Low

Density MDS Codes and Factors of Complete

Graphs,” IEEE Trans. on Information Theory, 45(1),

1817-1826, Nov. 1999.

